From last time:

LMs measure:

L) $P(\omega_1, \omega_2, ..., \omega_n) =)$ prob ef a text L) $P(\omega_n | \omega_1, \omega_2, ..., \omega_{n-1}) =)$ cond. prob ef Next word given prefix

n-gram models:

In cheap way to get these probabilities by counting/dividing over a training dataset

Perplexity

Ly a metric used to eval LMS Ly PPL is exponentiated any, may log likelihood

Ly ideal case:

PPL (train) is low generalization
PPL (test) is also low

PPL (train) is low 2 overfithing
PPL (test) is high bad! L) to compute PPL, you need an existing dataset of text how do we use a LM to generate new text? by this process is ralled decoding from the LM b part of the higher-level stage known as inference

My favorite LLM is — LM 40%.

Wishe Overhold St. 10%.

(hatch chade Genine Llame) Jakeministic Plus distributer vocaliste (moth (mode Genin Illome)

(moth (m

b) sampling word w; from this cond. distribution
Lo 40%, of the time choose laMa
Lo 5%, we choose (hat GPT

after generating a word Atoken, we add it to our profix and thun generale the next wood

My favorite LLM is Chat GPT > LM

| Image: Charles of the content of the content

My fav. LCM is Chat GBT.

My fau. LLM is Chat GPT, C/S>

La autoregressive decoding

neural language models:

- L) move away from "court + divide"
- b) (ore concepts.
 - by forward propagation
 - by how we go from input seg to Duffert prob. dist
 - backpropagation
 - b) how we "trein" the model to make better predictions
 - L) gradient descent
 - L) embedding { 4,day

embeddings:

Din an n-gram model, "movie" and "film" are treated as completely different

1) "one-hot" representation of a word movie = 20,0,0,...,1,0,0,...movie film = < 0,0,1,...0,0,0,... film = < 0,0,1,...0,0,0,... film = < 0,0,0,...movie. film = 0 } outhogons ideally, we mant a vector space Where words /phroses) does w/ somilar meanings have similar representations by what if we switch from sporse V-dim vector to a clease, low-dim vector commutates $Gd = \xi \xi \delta 0,100,769$, Movie = < 0.3, -1.4, 5,8> film = < 0.2, -1.8, 6.3 >

Zebra = 67.9, 3.2, -17.5>

Ly these are examples of word embeddings

now, giren a sequence et word embs associated w/ some prefix, ne need composité way to compose trom together favorite LLM V-din prob dist over next 19 sum to 1 non-regative d-dim prefix vector Softmax layer L) convert a dense vector to a V-dim prob. dist

example: output vocab = & Charget, & Genin, & Genin, & Waha

given pretix vector

x=4-2.3, 0.9, 5.4d=3, V=4

1. project x to 4-d Using a weight matrix W

L) weight matrices contain
parameters that we update in backprop
to change the next word dist.

 $W = \begin{cases} 1.2 & -0.3 & 0.9 \\ 0.2 & 0.4 & -2.2 \\ 3.9 & -1.9 & 6.5 \\ 4.5 & 2.2 & -0.1 \end{cases}$

this is a 4×3 motrix and x is 3 dimensional

6 matrix-vector product Wx is a 4-d vector $W = \begin{cases} 1.2 & -0.3 & 0.9 \\ 0.4 & -2.2 \\ -1.9 & 6.5 \\ -9 & 6.5 \\ -0.1 & -7 \\ 1 & 1 \\ 2.2 & -0.1 \end{cases}$ $W = \begin{cases} 1.2 & 0.9 \\ -2.2 & -0.1 \\ -1.9 & 6.5 \\ -0.1 & -7 \end{cases}$ $(1 \text{ Notice of the properties of$ x=<-2.3, 0.9,5.4> each dim of x intuitively a corresponds to a l'feature of the prefix Wx=<1.8,-11.9,12.9,-8.9> enter the Softmax fn

Softmax $(x) = \frac{e^{x}}{\sum e^{x}}$

Soft max (Ux) =

C1.5.10⁻⁵, 1.6.10⁻¹¹, 0.999984, 3.4.10⁻⁵

P(ChalGPT)

P(ChalGPT)

P(Chaldel)

P