Tokenization

CMSC 8480

Seminar on long context language models

Mohit lyyer

Tokenization

e How do we represent an input text?

 So far in this class... we chop it up into words

Input text: students opened their books

Tokenization

e How do we represent an input text?

 So far in this class... we chop it up into words

Input text: students opened their books
Input token IDs: 11 298 34 567

This tokenization step requires an external
tokenizer to detect word boundaries!

Word tokenization

* Not as simple as split on whitespace and punctuation...

Mr. O'Neill thinks that the boys' stories about San Francisco aren't amusing.

 Word tokenizers require lots of specialized rules about
how to handle specific inputs

e Check out spaCy’s tokenizers! (https://spacy.io/)

https://spacy.io/

Handling unknown words

e What happens when we encounter a word at test time
that we’ve never seen in our training data?

e With word level tokenization, we have no way of assigning an
index to an unseen word!

 This means we don’t have a word embedding for that word and
thus cannot process the input sequence

Handling unknown words

e What happens when we encounter a word at test time
that we’ve never seen in our training data?

e With word level tokenization, we have no way of assigning an
index to an unseen word!

 This means we don’t have a word embedding for that word and
thus cannot process the input sequence

e Solution: replace low-frequency words in training data
with a special <UNK> token, use this token to handle
unseen words at test time too

e Why use <UNK> tokens during training?

Limitations of <UNK>

e \We lose lots of information about texts with a lot of rare
words / entities

The chapel i1s sometimes referred to
as "Hen Gapel Lligwy" ("hen" being
the Welsh word for "old" and "capel"
meaning 'chapel’).

The chapel 1s sometimes referred to
as " Hen <unk> <unk> " (" hen " being
the Welsh word for " old " and "
<unk> " meaning " chapel ").

Other limitations

e \Word-level tokenization treats different forms of the same

word (e.g., “open”, “opened”, “opens”, “opening”, etc) as
separate types —> separate embeddings for each

This can be problematic especially when
training over smaller datasets, why?

An alternative: character
tokenization

e Small vocabulary, just the number of unique characters in
the training data!

* However, you pay for this with longer input sequences.
Why is this a problem for the models we’ve discussed?

2016: subword tokenization

 Developed for machine translation by Sennrich et al., ACL
2016

“The main motivation behind this paper 1s that the translation of some
words 1s transparent in that they are translatable by a competent
translator even if they are novel to him or her, based on a translation of

known subword units such as morphemes or phonemes.”

e [ater used in BERT, T5, RoBERTa, GPT, etc.

* Relies on a simple algorithm called byte pair encoding (Gage,
1994)

Byte pair encoding

* Form base vocabulary (all characters that occur in the
training data)

word frequency
hug 10
pug S
pun 12
bun 4
hugs 5

e Base vocab: b, g, h,n,p,s,u

Example from https://huggingface.co/transformers/tokenizer_summary.html

https://huggingface.co/transformers/tokenizer_summary.html

Byte pair encoding

* Now, count up the frequency of each character pair in the
data, and choose the one that occurs most frequently

word frequency character pair frequency
h+u+g 10 ug 20
p+U+g S pu 17
pP+U+n 12 un 16
b+u+n 4 hu 15
h+u+g+s S gs S

Example from https://huggingface.co/transformers/tokenizer_summary.html

https://huggingface.co/transformers/tokenizer_summary.html

Byte pair encoding

* Now, choose the most common pair (ug) and then merge
the characters together into one symbol. Add this new
symbol to the vocabulary. Then, retokenize the data

word frequency character pair frequency

h+ug 10 un 16

p+ug S h+ug 15
pP+U+n 12 pu 12
b+u+n 4 p+ug S
h+ug+s S ug+s 3

Example from https://huggingface.co/transformers/tokenizer_summary.html

https://huggingface.co/transformers/tokenizer_summary.html

Byte pair encoding

 Keep repeating this process! This time we choose un to
merge, next time we choose h+ug, etc.

word frequency character pair frequency

h+ug 10 un 16

p+ug S h+ug 15
pP+U+n 12 pu 12
b+u+n 4 p+ug S
h+ug+s S ug+s 3

Example from https://huggingface.co/transformers/tokenizer_summary.html

https://huggingface.co/transformers/tokenizer_summary.html

Byte pair encoding

e Eventually, after a fixed number of merge steps, we stop

word frequency
hug 10
p+ug S
p+un 12
b+un 4

hug + s S

* new vocab: b, g, h,n,p,s,u,ug, un, hug

Example from https://huggingface.co/transformers/tokenizer_summary.html

https://huggingface.co/transformers/tokenizer_summary.html

Byte pair encoding

 To avoid <UNK>, all possible characters / symbols need
to be included in the base vocab. This can be a lot if

including all unicode characters (there are ~138K unicode
symbols)!

e GPT-2 uses bytes as the base vocabulary (size 256) and
then applies BPE on top of this sequence (with some
rules to prevent certain types of merges).

e Commonly have vocabulary sizes of 32K to 64K

Other subword encoding schemes

e \WordPiece (Schuster et al., ICASSP 2012): merge by
likelihood as measured by language model, not by
frequency

e SentencePiece (Kudo et al., 2018): can do subword
tokenization without pretokenization (good for languages
that don’t always separate words w/ spaces), although
pretokenization usually improves performance

Limitations of subwords

 Hard to apply to languages with agglutinative (e.g.,
Turkish) or non-concatenative (e.g., Arabic) morphology

* Pretokenization rules don’t work on some languages
(Thai, Chinese don’t use spaces between words;
Hawaiian uses punctuation as consonants)

S k-t-b “write” (root form)

u:f kataba “he wrote”

uff kattaba “he made (someone) write”
XS} iktataba “he signed up”

Table 1: Non-concatenative morphology in Arabic.*
The root contains only consonants; when conjugat-
ing, vowels, and sometimes consonants, are interleaved

with the root. The root is not separable from its inflec-

tion via any contiguous split.
Clark et al., 2021, “CANINE”

ByT5: tokenizer free!

In Japan cloisonné enamels are known as shippd-yaki (£ =).

mT5 %

Pre-trained
SentencePiece
- Model

563 94586 <2452 48805 122C 2917 9617 418 259 15955
527 150911 4370 264 129213 274 15390 9913 43105 483
_In _Japan _cloison né _enam els _are _
known _as shippd-yaki (£ F %)

/\

_ Inputs - \Targets\

_In _Japan _clo ison (X} (X) né _enam els
_are _ known _as _shipp & (Y) E £2).{2)
-yaki (€ <Y)

| J

(o) (o]

Xue et al., 2021, “ByT5”

ByT5: tokenizer free!

In Japan cloisonné enamels are known as shippo-yaki (1= {%).

mT5 M~ UTFs ByTS
Pre-trained ~ Encode ———_
SentencePiece \\
~ Model

731103274 97 11297 110 3299 108 111 105 115 171 110 110 185 169 32 1C1 110 97
109 101 108 1552 97 114 101 32 107 11C 111 119 110 32 €7 115 32 115 104 105 112

U0U 9900 4290c 400 1220 <BIT1 901 410 <09 15900 112 197 141 45 121 97 107 105 32 40 228 134 131 229 174 157 231 132 130 41 46

527 150911 4370 264 129213 274 15390 9913 43105 483
In Japan cloiscnné€. e, enamels are known a

_In _Japan _cloison né _enam els _are _ . _ .
s shippd,d,-yaki (£, t,t. %, 5,5, B BLHE).

known _as _shippd-yaki (£t F £)

_ Inputs Targets _ : _ Inputs Targets _

_In _Japan _clo ison (X) (X)> né _enam els In Japan clois{X)e (X>onné, é, enamel
_are _ known _as _shipp 0 (Y) £ #2). {2 : known as shippd,o, sarkV)t, £, £ =,
-yaki _(£<Y? E -yaki (t, (V) 4% % &) D

E 4) [Light Decoder]

Encoder Decoder ' Heavy
: Encoder
' g /

Xue et al., 2021, “ByT5”

Way fewer params associated
with vocabulary!

mT5 ByT5
Size Params dmodel dgr # Enc/Dec dinodel dg #Enc #Dec
Small 300M 512 1024 8 1472 3584 12 4
Base 582M 768 2048 12 1536 3968 18 6
Large 1.23B 1024 2816 24 1536 3840 36 12
XL 3.74B 2048 5120 24 2560 6720 36 12
XXL 12.9B 4096 10240 24 4672 12352 36 12

Impressive gains on tasks w/
noisy data

Learnable Noise Unseen Noise
XNLI TyDiQA- XNLI
Model (accuracy) GoldP (F1) (accuracy)

Clean mT5 81.1 85.3 81.1
ByT5 79.7 87.7 79.7

D mT5 -10.2 -19.9 -18.3

rop ByT5 -8.2 -18.4 -11.4

mT5 -9.2 -28.5 -11.4

Add/Drop/Mutate ByTS5 8.0 _24.3 -10.9

» mT5 -8.5 -11.0 -12.3
Repetitions ByTS5 4.1 -3.1 -5.9

mT5 -32.0 -17.5 -34.4

Antspeak ByT5 -8.7 -4.3 -24.4
Uppercase mT) 70 ~7.6 8]
PP ByT5 -1.5 ~1.0 1.7

mT5 -25.7 -13.9 -19.2
Random Case ByT5 -1.5 -1.2 -5.9

How to deal w/ increased
sequence length?

e ByTb5: just train with shorter sequences (mT5 is trained on

max length 1024 subword tokens, ByT5 trained on max
1024 bytes)

e At test-time, ByT5 can be 7X slower than mT5 to generate
sentences

e |ater this semester: use more efficient Transformer
architectures

Learnable tokenization

Updated during training

Stack

e e -

Subword Token
Sequence

?

L

Subword
Tokenizer

J

i

Byte Sequence]

Subword Model

- J

Transformer
Stack

1

|

Soft "Subword”
Sequence

!

\.

Gradient-based
Subword
Tokenizer
(GBST)

y

[|

Byte Sequence

Charformer

lay et al., 2021, “Charformer”

1-Blocks

2-Blocks

3-Blocks

4-Blocks

Consider multiple
segmentations

Then, for each character, score all
blocks to which that character belongs

C h a r f 0 r m e r
r—
p, P P, P, P. lP. Il P, P, P, P p p
DIZ p34 pr p7:8 p9:l0 p'l:l2
p1 3 p46 p7;9 p1012
p 4 p9:12

