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stuff from last time…

• HW1 due next Monday, project proposal due 
next Friday 

• project groups? 
• can you post readings earlier? 
• can you give us a timeline of all due dates?
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Probabilistic Language Modeling
•Goal: compute the probability of a sentence or 

sequence of words: 

     P(W) = P(w1,w2,w3,w4,w5…wn) 

•Related task: probability of an upcoming word: 
      P(w5|w1,w2,w3,w4) 

•A model that computes either of these: 

      P(W)  or P(wn|w1,w2…wn-1)   is called a language model or LM

language model review
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p(wj |students opened their) =
count(students opened their wj)

count(students opened their)

what is the order of this n-gram model? (i.e., what is n?)
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Problems with	n-gram	Language	Models

Note: Increasing	nmakes	sparsity	problems	worse.
Typically	we	can’t	have	n bigger	than	5.

Problem:What	if	“students	
opened	their” never	occurred	in	
data?	Then	we	can’t	calculate	
probability	for	any !

Sparsity	Problem	2

Problem:What	if	“students	
opened	their						” never	
occurred	in	data?	Then	
has	probability	0!

Sparsity	Problem	1

(Partial)	Solution: Add	small	!
to	count	for	every																.	
This	is	called	smoothing.

(Partial)	Solution: Just	condition	
on	“opened	their” instead.	
This	is	called	backoff.

2/1/1812

p(wj |students opened their) =
count(students opened their wj)

count(students opened their)



 6

Problems with	n-gram	Language	Models

Note: Increasing	nmakes	sparsity	problems	worse.
Typically	we	can’t	have	n bigger	than	5.

Problem:What	if	“students	
opened	their” never	occurred	in	
data?	Then	we	can’t	calculate	
probability	for	any !

Sparsity	Problem	2

Problem:What	if	“students	
opened	their						” never	
occurred	in	data?	Then	
has	probability	0!

Sparsity	Problem	1

(Partial)	Solution: Add	small	!
to	count	for	every																.	
This	is	called	smoothing.

(Partial)	Solution: Just	condition	
on	“opened	their” instead.	
This	is	called	backoff.

2/1/1812

p(wj |students opened their) =
count(students opened their wj)

count(students opened their)



 7

Problems with	n-gram	Language	Models

Note: Increasing	nmakes	sparsity	problems	worse.
Typically	we	can’t	have	n bigger	than	5.

Problem:What	if	“students	
opened	their” never	occurred	in	
data?	Then	we	can’t	calculate	
probability	for	any !

Sparsity	Problem	2

Problem:What	if	“students	
opened	their						” never	
occurred	in	data?	Then	
has	probability	0!

Sparsity	Problem	1

(Partial)	Solution: Add	small	!
to	count	for	every																.	
This	is	called	smoothing.

(Partial)	Solution: Just	condition	
on	“opened	their” instead.	
This	is	called	backoff.

2/1/1812



 8

Problems with	n-gram	Language	Models

Note: Increasing	nmakes	sparsity	problems	worse.
Typically	we	can’t	have	n bigger	than	5.

Problem:What	if	“students	
opened	their” never	occurred	in	
data?	Then	we	can’t	calculate	
probability	for	any !

Sparsity	Problem	2

Problem:What	if	“students	
opened	their						” never	
occurred	in	data?	Then	
has	probability	0!

Sparsity	Problem	1

(Partial)	Solution: Add	small	!
to	count	for	every																.	
This	is	called	smoothing.

(Partial)	Solution: Just	condition	
on	“opened	their” instead.	
This	is	called	backoff.

2/1/1812



 9

Problems with	n-gram	Language	Models

2/1/1813

Storage:	Need	to	store	count	
for	all	possible	n-grams.	So	
model	size	is	O(exp(n)).

Increasing	nmakes	model	size	huge!
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How	to	build	a	neural Language	Model?

• Recall	the	Language	Modeling	task:
• Input:	sequence	of	words
• Output:	prob dist of	the	next	word	

• How	about	a	window-based	neural	model?
• We	saw	this	applied	to	Named	Entity	Recognition	in	Lecture	4

2/1/1820
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A	fixed-window	neural	Language	Model

the students opened theiras	 the	 proctor	 started	 the clock ______

discard fixed	window
2/1/1821
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A	fixed-window	neural	Language	Model

the students opened their

books
laptops

concatenated	word	embeddings

words	/	one-hot	vectors	

hidden	layer

a zoo

output	distribution	

2/1/1822

c1, c2, c3, c4

̂y = softmax(W2h + b2)

W1

W2

c1 c2 c3 c4

h = f(W1c + b1)

c = [c1; c2; c3; c4]
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2/1/1822

W1

W2

c1 c2 c3 c4

how does this compare to a  
normal n-gram model?A	fixed-window	neural	Language	Model

the students opened their

books
laptops

a zoo

Improvements over	n-gram	LM:
• No	sparsity	problem
• Model	size	is	O(n)	not	O(exp(n))

Remaining	problems:
• Fixed	window	is	too	small
• Enlarging	window	enlarges	
• Window	can	never	be	large	

enough!
• Each									uses	different	rows	

of						.	We	don’t	share	weights	
across	the	window.

We	need	a	neural	
architecture	that	can	

process	any	length	input

2/1/1823

ci
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ci



Recurrent Neural Networks!
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A	RNN	Language	Model

the students opened theirwords	/	one-hot	vectors	

books
laptops

word	embeddings

a zoo

output	distribution	

Note:	this	input	sequence	could	be	much	
longer,	but	this	slide	doesn’t	have	space!

hidden	states	

is	the	initial	hidden	state

2/1/1825

c1, c2, c3, c4

c1 c2 c3 c4

the students opened their

̂y = softmax(W2h(t) + b2)

W2

h(t) = f(Whh(t−1) + Wect + b1)
h(0) is initial hidden state!
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c1 c2 c3 c4

the students opened their

W2

A	RNN	Language	Model

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can	process	any	length

input
• Model	size	doesn’t	

increase for	longer	input
• Computation	for	step	t

can	(in	theory)	use	
information	from many	
steps	back

• Weights	are	shared
across	timestepsà
representations	are	
shared

RNN	Disadvantages:
• Recurrent	computation	

is	slow
• In	practice,	difficult	to	

access	information	from	
many	steps	back	

More	on	
these	next	
week

2/1/1826

why is this good?



let’s look at the derivatives!

 18



 19

Training	a	RNN	Language	Model

• Get	a	big	corpus	of	text	which	is	a	sequence	of	words
• Feed	into	RNN-LM;	compute	output	distribution									for	every	step	t.

• i.e.	predict	probability	dist of	every	word,	given	words	so	far

• Loss	function	on	step	t	is	usual	cross-entropy	between	our	predicted	
probability	distribution								,	and	the	true	next	word																						:

• Average	this	to	get	overall	loss	for	entire	training	set:

2/1/1827
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Training	a	RNN	Language	Model
=	negative	log	prob

of	“students”

the students opened their …examsCorpus

Loss

…

2/1/1828 c1 c2 c3 c4

W2 W2 W2 W2
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Training	a	RNN	Language	Model
=	negative	log	prob

of	“opened”

Corpus the students opened their …exams

Loss

…

2/1/1829
c1 c2 c3 c4

W2 W2 W2 W2



 22

Training	a	RNN	Language	Model
=	negative	log	prob

of	“their”

Corpus the students opened their …exams

Loss

…

2/1/1830 c1 c2 c3 c4

W2 W2 W2 W2
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Training	a	RNN	Language	Model
=	negative	log	prob

of	“exams”

Corpus the students opened their …exams

Loss

…

2/1/1831 c1 c2 c3 c4

W2 W2 W2 W2
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Training	a	RNN	Language	Model

+																		+																			+																		+	…						=

Corpus the students opened their …exams

Loss

…

2/1/1832 c1 c2 c3 c4

W2 W2 W2 W2
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Training	a	RNN	Language	Model

• However:	Computing	loss	and	gradients	across	entire	corpus is	
too	expensive!

• Recall: Stochastic	Gradient	Descent	allows	us	to	compute	loss	
and	gradients	for	small	chunk	of	data,	and	update.

• à In	practice,	consider																							as	a	sentence

• Compute	loss										for	a	sentence	(actually	usually	a	batch	of	
sentences),	compute	gradients	and	update	weights.	Repeat.

2/1/1833
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RNNs	have	greatly	improved	perplexity

n-gram	model

Increasingly	
complex	RNNs

Perplexity	improves	
(lower	is	better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

2/1/1844



okay… enough with the 
unconditional LMs. let’s 

switch to conditional LMs!
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we’ll start with machine translation



MT goals

• Motivation: Human translation is expensive

• Rough translation vs. none

• Interactive assistance for human translators

• e.g. Lilt
• https://www.youtube.com/watch?v=YZ7G3gQgpfI

• https://lilt.com/app/projects/details/1887/edit-document/2306

• [compare to bilingual dictionary]
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https://www.youtube.com/watch?v=YZ7G3gQgpfI
https://lilt.com/app/projects/details/1887/edit-document/2306


MT paradigms
• Rule-based transfer rules

• Manually program lexicons/rules

• SYSTRAN (AltaVista Babelfish; originally from 70s)

• Statistical MT

• Word-to-word, phrase-to-phrase probs

• Learn phrase- or syntax-tree translation rules from data,  
search for high-scoring translation outputs

• Key research in the early 90s

• Google Translate (mid 00s)

• Open-source: Moses

• Neural MT

• Research in early 10s;  very recently deployed

• Latent representations of words/phrases
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Machine learning for MT

• MT as ML:   Translation is something people do 
naturally.  Learn rules from data?

• Parallel data:  (source, target) text pairs

• E.g. 20 million words of European Parliament 
proceedings 
http://www.statmt.org/europarl/

• Training: learn parameters to predict 
{source => target}

• Test time: given source sentence, search for 
high-scoring target  (e.g. beam search)
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http://www.statmt.org/europarl/
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MT History: Hype vs. Reality



 32

How Good is Machine Translation?
Chinese > English
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How Good is Machine Translation?
French > English
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What is MT good (enough) for?
• Assimilation: reader initiates translation, wants to know content

• User is tolerant of inferior quality
• Focus of majority of research

• Communication: participants in conversation don’t speak same language
• Users can ask questions when something is unclear
• Chat room translations, hand-held devices
• Often combined with speech recognition

• Dissemination: publisher wants to make content available in other 
languages

• High quality required
• Almost exclusively done by human translators



today: neural MT
• we’ll use French (f) to English (e) as a running 

example 
• goal: given French sentence f with tokens f1, 

f2, … fn  produce English translation e with 
tokens e1, e2, … em

 35

is n always equal to m?



today: neural MT
• we’ll use French (f) to English (e) as a running 

example 
• goal: given French sentence f with tokens f1, 

f2, … fn  produce English translation e with 
tokens e1, e2, … em 

• real goal: compute 

 36

is n always equal to m?

arg max
e

p(e | f )



today: neural MT
• let’s use an NN to directly model 
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p(e | f )

p(e | f ) = p(e1, e2, …, em | f )

= p(e1 | f ) ⋅ p(e2 |e1, f ) ⋅ p(e3 |e2, e1, f ) ⋅ …

=
m

∏
i=1

p(ei |e1, …, ei−1, f )

how does this formulation relate to the language 
models we discussed previously?



seq2seq models

• use two different RNNs to model  

• first we have the encoder, which encodes the 
French sentence f 

• then, we have the decoder, which produces 
the English sentence e

 38

m

∏
i=1

p(ei |e1, …, ei−1, f )
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En
co

de
r R

NN

Neural Machine Translation (NMT)

2/15/1823

<START>

Source sentence (input)

les    pauvres sont démunis

The sequence-to-sequence model
Target sentence (output)

Decoder RNN

Encoder RNN produces 
an encoding of the 
source sentence.

Encoding of the source sentence.
Provides initial hidden state 

for Decoder RNN.

Decoder RNN is a Language Model that generates 
target sentence conditioned on encoding.

the

ar
gm

ax
the

ar
gm

ax

poor

poor

ar
gm

ax

don’t

Note: This diagram shows test time behavior: 
decoder output is fed in           as next step’s input

have      any    money  <END>

don’t    have      any    money

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax
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Training a Neural Machine Translation system

2/15/1825

En
co

de
r R

NN

Source sentence (from corpus)

<START>   the      poor    don’t    have      any    moneyles    pauvres sont démunis

Target sentence (from corpus)

Seq2seq is optimized as a single system.
Backpropagation operates “end to end”.

Decoder RNN

!"# !"$ !"% !"& !"' !"( !")

*# *$ *% *& *' *( *)

= negative log 
prob of “the”

* = 1
-./0#

1
*/ =                 +          +         +         +          +         +

= negative log 
prob of <END>

= negative log 
prob of “have”

what are the parameters of this model?
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Training a Neural Machine Translation system

2/15/1825

En
co

de
r R

NN

Source sentence (from corpus)

<START>   the      poor    don’t    have      any    moneyles    pauvres sont démunis

Target sentence (from corpus)

Seq2seq is optimized as a single system.
Backpropagation operates “end to end”.

Decoder RNN

!"# !"$ !"% !"& !"' !"( !")

*# *$ *% *& *' *( *)

= negative log 
prob of “the”

* = 1
-./0#

1
*/ =                 +          +         +         +          +         +

= negative log 
prob of <END>

= negative log 
prob of “have”

what are the parameters of this model?
Wenc

h , Wenc
e , Cenc, Wdec

h , Wdec
e , Cdec, Wout

C is word embedding matrix



decoding
• given that we trained a seq2seq model, how 

do we find the most probable English 
sentence?  

• more concretely, how do we find  

• can we enumerate all possible English 
sentences e? 

 43

arg max
m

∏
i=1

p(ei |e1, …, ei−1, f )



decoding
• given that we trained a seq2seq model, how 

do we find the most probable English 
sentence?  

• easiest option: greedy decoding
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Better-than-greedy decoding?

• We showed how to generate (or “decode”) the target sentence 
by taking argmax on each step of the decoder

• This is greedy decoding (take most probable word on each step)
• Problems?

2/15/1826

<START>

the

ar
gm

ax

the

ar
gm

ax

poor

poor

ar
gm

ax
don’t have      any    money  <END>

don’t    have      any    money

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

issues?



Beam search
• in greedy decoding, we cannot go back and 

revise previous decisions!  

• fundamental idea of beam search: explore 
several different hypotheses instead of just a 
single one 

• keep track of k most probable partial translations 
at each decoder step instead of just one! 

Better-than-greedy decoding?

• Greedy decoding has no way to undo decisions! 
• les pauvres sont démunis (the poor don’t have any money)
• → the ____
• → the poor ____
• → the poor are ____

• Better option: use beam search (a search algorithm) to explore 
several hypotheses and select the best one

2/15/1827

the beam size k is usually 5-10
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Beam search decoding: example

Beam size = 2

2/15/1830

<START>

the

a

-1.05

-1.39
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Beam search decoding: example

Beam size = 2

2/15/1831

poor

people

poor

person

<START>

the

a

-1.90

-1.54

-2.3

-3.2
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Beam search decoding: example

Beam size = 2

2/15/1832

poor

people

poor

person

are

don’t

person

but

<START>

the

a

-2.42

-3.12

-2.13

-3.53
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Beam search decoding: example

Beam size = 2

2/15/1833

poor

people

poor

person

are

don’t

person

but

always

not

have

take
<START>

the

a

-3.82

-3.32

-2.67

-3.61

and so on…
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Beam search decoding: example

Beam size = 2

2/15/1834

poor

people

poor

person

are

don’t

person

but

always

not

have

take

in

with

any

enough<START>

the

a
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Beam search decoding: example

Beam size = 2

2/15/1835

poor

people

poor

person

are

don’t

person

but

always

not

have

take

in

with

any

enough

money

funds

money

funds

<START>

the

a
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Beam search decoding: example

Beam size = 2

2/15/1836

poor

people

poor

person

are

don’t

person

but

always

not

have

take

in

with

any

enough

money

funds

money

funds

<START>

the

a
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what are the termination 
conditions for beam search?

does beam search always produce the best 
translation (i.e., does it always find the argmax?)
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Sequence-to-sequence: the bottleneck problem

2/15/1848

En
co

de
r R

NN

Source sentence (input)

<START>   the      poor    don’t    have      any    moneyles    pauvres sont démunis

the      poor    don’t    have      any    money  <END>

Decoder RNN

Target sentence (output)

Encoding of the 
source sentence. 

This needs to capture all 
information about the 

source sentence.
Information bottleneck!

next class preview: attention!



onto evaluation…
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How good is a translation?
Problem: no single right answer
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Evaluation
• How good is a given machine translation system?

• Many different translations acceptable

• Evaluation metrics
• Subjective judgments by human evaluators
• Automatic evaluation metrics
• Task-based evaluation
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Adequacy and Fluency
• Human judgment

• Given: machine translation output
• Given: input and/or reference translation
• Task: assess quality of MT output

• Metrics
• Adequacy: does the output convey the meaning of the input sentence? Is 

part of the message lost, added, or distorted?
• Fluency: is the output fluent? Involves both grammatical correctness and 

idiomatic word choices.



 59

Fluency and Adequacy: Scales
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Let’s try:
rate fluency & adequacy on 1-5 scale



what are some issues 
with human evaluation?

 62
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Automatic Evaluation Metrics
• Goal: computer program that computes quality of translations

• Advantages: low cost, optimizable, consistent

• Basic strategy
• Given: MT output
• Given: human reference translation
• Task: compute similarity between them
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Precision and Recall of Words
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Precision and Recall of Words
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BLEU 
Bilingual Evaluation Understudy

In the MT final project, we will 
use BLEU to evaluate models
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Multiple Reference Translations
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BLEU examples
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BLEU examples

why does BLEU 
not account for 

recall?



what are some drawbacks of BLEU?
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what are some drawbacks of BLEU?

• all words/n-grams treated as equally relevant 
• operates on local level 
• scores are meaningless (absolute value not 

informative) 
• human translators also score low on BLEU

 71
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Yet automatic metrics such as BLEU 
correlate with human judgement


