Retrieval-augmenteo
language modadels

CS 685, Fall 2020

Advanced Natural Language Processing

Mohit lyyer

College of Information and Computer Sciences
University of Massachusetts Amherst

BERT barbershop: 54%

Bob went to the <MASK> (teacher): barber: 20%
to get a buzz cut —> 24 layer —» salon: 6%

Transformer stylist: 4%

World knowledge is implicitly encoded in
BERT’s parameters! (e.g., that
barbershops are places to get buzz cuts)

BERT barbershop: 54%

Bob went to the <MASK> (teacher): barber: 20%
to get a buzz cut —> 24 layer —» salon: 6%

Transformer stylist: 4%

In these language models, the learned world knowledge 1s
stored implicitly in the parameters of the underlying neural
network. This makes it difficult to determine what knowl-
edge 1s stored 1n the network and where. Furthermore, stor-
age space 1s limited by the size of the network—to cap-
ture more world knowledge, one must train ever-larger net-
works, which can be prohibitively slow or expensive.

Guu et al., 2020 ("REALM”)

One option: condition predictions on
explicit knowledge graphs

'
o
0‘ ” 8 ~ "ta,.
\é - |'§ ,78
> h ¢ & SungBy Ed hln. IsSmg_rOf
ape of You |& = :W_ritt_en_By Sheeran — %@Castle on the Hill
3 = "'h
Alice () ®re™ ~» Pop *(’(e“‘e *9
Y 3 @I see Fire
%
< Tony ’/ eme
C Folk &%
Song the user has Y Songs the user may
listened to before Knowledge Graph be interested in

Wang et al., 2019

Pros / cons

Explicit graph structure makes KGs easy to navigate
Knowledge graphs are expensive to produce at scale

Automatic knowledge graph induction is an open
research problem

Knowledge graphs struggle to encode complex
relations between entities

Another source of
kKnowledge: unstructured text!

* Readily available at scale, requires no processing

* \We have powerful methods of encoding semantics
(e.q., BERT)

* However, these methods don’t really work with larger
units of text (e.q., books)

* Extracting relevant information from unstructured text
IS more difficult than it is with KGs

- Unlabeled text, from pre-training corpus (&X') -
E The [MASK] at the top of the pyramid ()

- Unlabeled text, from pre-training corpus (X) -,
E The [MASK] at the top of the pyramid ()

* Textual retrieve l
knowledge | - - - - - Neural Knowledge Retriever ~ pg(z|:c)]
corpus (Z)/

* Textual retrieve l
knowledge - ----- Neural Knowledge Retriever ~ pg(z|x)]
corpus (Z)/ l

- Retrieved document®---------------------
The pyramidion on top allows for less

material higher up the pyramid. (Z)

- Unlabeled text, from pre-training corpus (X) -,
E The [MASK] at the top of the pyramid (z) E

* Textual retrieve l
knowledge |- ---- Neural Knowledge Retriever ~ p9(2|$)]
corpus (Z)/ l

- Retrieved document®---------------------

. The pyramidion on top allows for less

' material higher up the pyramid. (Z)

- Query and document ~----------ooooooooo-- :

' [CLS] The [MASK] at the top of the pyramid
E[SEP] The pyramidion on top allows for less

material higher up the pyramid. Cr,z)

- Unlabeled text, from pre-training corpus (X) -,
E The [MASK] at the top of the pyramid ()

* Textual retrieve
knowledge | - - - - - Neural Knowledge Retriever ~ pg(z|x)]
corpus (Z)/ i

- Retrieved document®---------------------
The pyramidion on top allows for less

material higher up the pyramid. (Z)

- Query and document ~---------oooooooooo .
' [CLS] The [MASK] at the top of the pyramid

« [SEP] The pyramidion on top allows for less

: material higher up the pyramid. Cr,z)

[Knowledge—Augmented Encoder ~ py(y|z, z)j

|

-- Answer ---=------------ .
[MASK] = pyramidion (v)

End-to-end backpropagation

* Textual retrieve l
knowledge - ----- Neural Knowledge Retriever ~ pg(z|x)]
corpus (Z)/

l How can we train
- Retrieved document--- this retriever???

The pyramidion on top aiiuwe 1ur icoo |
material higher up the pyramid. (Z) :

- Query and document ~----------ooooooooo-- :

' [CLS] The [MASK] at the top of the pyramid
« [SEP] The pyramidion on top allows for less

material higher up the pyramid. Cr,z)

[Knowledge—Augmented Encoder ~ py(y|z, z)j

|

-- Answer ---=------------ .
[MASK] = pyramidion (v)

End-to-end backpropagation
.._._._._._._._._._._._._._._._._._._)

REALM decomposes p(y | x) into two steps: retrieve, then
predict. Given an input x, we first retrieve possibly helpful
documents z from a knowledge corpus Z. We model this as
a sample from the distribution p(z |). Then, we condition
on both the retrieved z and the original input x to generate
the output y—modeled as p(y | z,). To obtain the overall
likelihood of generating y, we treat z as a latent variable
and marginalize over all possible documents z, yielding

py|z) = pyl|zz)p(z|)

z€eZ

REALM decomposes p(y | x) into two steps: retrieve, then
predict. Given an input x, we first retrieve possibly helpful
documents z from a knowledge corpus Z. We model this as
a sample from the distribution p(z |). Then, we condition
on both the retrieved z and the original input x to generate
the output y—modeled as p(y | z,). To obtain the overall
likelihood of generating y, we treat z as a latent variable
and marginalize over all possible documents z, yielding

Knowledge-

augmented encoder \

py|z) = pyl|zz)p(z|)

€2 \ Neural
knowledge

retriever

Knowledge Retriever The retriever is defined using a
dense inner product model:

exp f(z, 2)
!/ eXp f(x7 Zl) ,
f(z,2) = Embed;nput () ' Embedgoc(2),

p(Z\ﬂ?):Z

where Embed;ngy: and Embedy,c are embedding functions
that map = and z respectively to d-dimensional vectors.
The relevance score f(x,z) between x and z is defined as
the inner product of the vector embeddings. The retrieval
distribution is the softmax over all relevance scores.

Embed function is just BERT!

joingger(z) = [CLS]x [SEP]
joingge(z1,22) = [CLS]1z1 [SEP]z2 [SEP]

Embedinput (ZE) — WinputBERTCLS (J O inBERT (il?))
Embedgoc (Z) — WdocBERTCLS (J O inBERT (Ztitle ‘ Zbody))

Knowledge-Augmented Encoder Given an input x and
a retrieved document z, the knowledge-augmented encoder
defines p(y | z,z). We join x and z into a single sequence
that we feed 1into a Transformer (distinct from the one used
in the retriever).

Jz

p(ylz,z) = || py;l2)

j=1
p(yj | 2,T) o< exp (w;rBERTMASK(j)(jOinBERT(xa Zbody)))

where BERTy,sx(;) denotes the Transtormer output vector
corresponding to the j** masked token, J,; is the total num-
ber of [MASK] tokens in x, and w; 1is a learned word em-
bedding for token y;.

Isn’t training the retriever
extremely expensive”

The key computational challenge is that the marginal prob-
ability p(y |z) =) _,.zpP(y |z, z) p(z | x) involves a sum-
mation over all documents z in the knowledge corpus Z.
We approximate this by instead summing over the top £
documents with highest probability under p(z | z)—this is
reasonable 1f most documents have near zero probability.

Imagine if your knowledge corpus was
every article in Wikipedia... this would be
super expensive without the approximation

Maximum inner product
search (MIPS)

Algorithms that approximately find the top-k
documents

Scales sub-linearly with the number of documents
(looth time and storage)

e Shrivastava and Li, 2014 (“Asymmetric LSH...”)

Requires precomputing the BERT embedding of
every document in the knowledge corpus and then
building an index over the embeddings

Need to refresh the index!

* We are training the parameters of the retriever, 1.e.,
the BERT architecture that produces Embeddoc(z)

If we precompute all of the embeddings, the search
iIndex becomes stale when we update the
parameters of the retriever

 REALM solution: asynchronously refresh the index by
re-embedding all docs after a few hundred training
iterations

MIPS index of Z

Index builder MLM trainer

(stale 6") (fresh)

———
-

Updates 6’ < 6

Figure 3. REALM pre-training with asynchronous MIPS re-
freshes.

Other tricks in REALM

e Salient span masking:. mask out spans of text
corresponding to named entities and dates

* Null document: always include an empty document in
the top-k retrieved docs, allowing the model to rely
on its implicit knowledge as well

Fvaluation on open-domain QA

o Unlike SQUAD-style QA, in open-domain QA we are
only given a question, not a supporting document
that Is guaranteed to contain the answer

* Open-domain QA generally has a large retrieval
component, since the answer to any given guestion
could occur anywhere In a large collection of
documents

Name Architectures Pre-training (7511(%1() (3‘1?’/31() (11? ;Il‘ K) # params
BERT-Baseline (Lee et al., 2019) Sparse Retr.4Transformer BERT 26.5 17.7 21.3 110m
T5 (base) (Roberts et al., 2020) Transformer Seq2Seq TS5 (Multitask) 27.0 29.1 - 223m
TS5 (large) (Roberts et al., 2020) Transformer Seq2Seq TS5 (Multitask) 29.8 32.2 - 738m
T5 (11b) (Roberts et al., 2020) Transformer Seq2Seq TS5 (Multitask) 34.5 37.4 - 11318m
DrQA (Chen et al., 2017) Sparse Retr.+-DocReader N/A - 20.7 25.7 34m
HardEM (Min et al., 2019a) Sparse Retr.4+Transformer BERT 28.1 - - 110m
GraphRetriever (Min et al., 2019b) GraphRetriever+Transformer BERT 31.8 31.6 - 110m
PathRetriever (Asai et al., 2019) PathRetriever+Transformer MLM 32.6 - - 110m
ORQA (Lee et al., 2019) Dense Retr.4+Transformer ICT4+BERT 333 36.4 30.1 330m
Ours (X = Wikipedia, Z = Wikipedia) Dense Retr.+Transformer REALM 39.2 40.2 46.8 330m
Ours (X = CC-News, Z = Wikipedia) Dense Retr.+Transformer REALM 40.4 40.7 42.9 330m

Table 3. An example where REALM utilizes retrieved documents to better predict masked tokens. It assigns much higher probability
(0.129) to the correct term, “Fermat”, compared to BERT. (Note that the blank corresponds to 3 BERT wordpieces.)

x: An equilateral triangle is easily constructed using a straightedge and compass, because 3 is a ___ prime.
(@ BERT p(y=“Fermat”|xz) = 1.1X 107 (No retrieval.)
(b) REALM p(y = “Fermat”|z,z) = 1.0 (Conditional probability with document z =“257 is ... a Fermat prime.
Thus a regular polygon with 257 sides is constructible with compass . ..”)
(c)REALM p(y = “Fermat”|z) = 0.129 (Marginal probability, marginalizing over top 8 retrieved documents.)

Can retrieval-augmented
| Ms improve other tasks”

Nearest-neighbor machine translation

Generated

Test Input tokens Representatlon Target
T Y1:i—1 q= f(x,91:i-1) Y
Jai été dans ma propre e p

chambre.

Khandelwal et al., 2020

Nearest-neighbor machine translation

Training Translation Contexts

Datastore

Representation | Targe
(s, 1) Ry = (5™, 670 | vy ="
J'ai été a Paris. | have been
Javais éeté a la maison. | had @I Yo been
J'apprécie l'éte. | enjoy @Y Jolo) summer
J'ai ma propre chambre. | have my
Generated .
Test Input tokens Represenfatlon Target
Z Y1:i—1 q=f(z,91:6-1) Yi
J'ai été dans ma propre ”

Khandelwal et al., 2020

Nearest-neighbor machine translation

Training Translation Contexts Datastore Distan
Representation | Targe stances
(s™, ") ki = f(s™,6™) | v; =t | |di = d(kj,q)
J'ai été a Paris. | have been [4
J'avais été a la maison. | had @I Yo been > 3
J'apprécie l'éte. | enjoy @Y Jolo) summer —» 100
J'ai ma propre chambre. | have my > 1
Generated .
Test Input tokens Represenfatlon Target
Z Y1:i—1 q=f(z,91:6-1) Yi
Jai été dans ma propre e 2

chambre.

Khandelwal et al., 2020

Nearest-neighbor machine translation

Training Translation Contexts

Datastore

(n) Representation | Targe Distances Nearest k
(s™, ") kj = f(s(n),tz(i)l) v = tf;n d; = d(kj,q)
J'ai été a Paris. | have been [4 my | 1
J'avais été a la maison. | had @I Yo been > 3 been | 3
Japprécie l'été. | enjoy @ JoI® summer —» 100 been | 4
J'ai ma propre chambre. | have my > 1
Generated .
Test Input tokens Represenfatlon Target
Z Y1:i—1 q=f(z,91:6-1) Yi
Jai été dans ma propre Ih >

Khandelwal et al., 2020

Nearest-neighbor machine translation

- . Datastore
T T lat text . o ..
raining Translation Contexts Representation | Targe Distances Nearest k Temperature Normalization
(s, ™) k= £, 8 | vy = £ | |dj = d(kj,q) d; = d;/T p(k;) o exp(d))
Jai été a Paris. | have been ™ 4 my |17~ my | 01— my | 040
j araisisio I?,’a} {aseh I’ had (eJol Yo been > 1';’;0 been | 3 —>| been | 0.3 | been | 0.32
GO enjoy CeO0O) |summer — been | 4 —| been | 0.4 — been | 0.28
J'ai ma propre chambre. | have my > 1 1
Aggregation
Test Input Gf::;ztsed Representation | Target PeNN(Ys) = Z 1y, =v; P(k;)
Zr Y1:i-1 q= f(x,91:i-1) Yi /
Jai été dans ma propre e p my 0.4
chambre. ; been 0.6

Khandelwal et al., 2020

Nearest-neighbor machine translation

- . Datastore

T T lat text
raining Translation Contexts Representation | Targe Distances Nearest k Temperature Normalization
(s, (™) k= £, 8 | vy = £ | |dj = d(kj,q) d; = d;/T p(k;) o exp(d))
Jai été a Paris. | have been ™ 4 my |17~ my | 01— my | 040
j araisisio I?,’a} {aseh I’ had (eJol Yo been > 130 been | 3 —>| been | 0.3 | been | 0.32
gepiECetic enjoy CeOQ |summer — been | 4 —»| been | 0.4 —* been | 0.28

J'ai ma propre chambre. | have my > 1
Aggregation
Test Input Gf::;:tsed Representation | Target PeNN(Ys) = Z 1y, =v; P(k;)
L U1:i—1 q=f(z,91:6-1) Yi J
Jai été dans ma propre e p my 0.4
chambre. ; been 0.6

Final KNN
distribution

Khandelwal et al., 2020

Interpolate between KNN prediction
and decoder’s actual prediction

P(yi|$, ?lez'—l) = A pkNN(yz'|377 ?lez'—l)

Final KNN
distribution

(]- T)‘) pMT(yz‘xa gl:z’—l)

/

Decoder’s predicted

distribution

Khandelwal et al., 2020

Unlike REALM, this approach
doesn't require any training! It
retrieves the KNNs via L2 distance
using a fast kNN library (FAISS)

This Is quite expensive!

Computational Cost While KANN-MT does not add trainable model parameters, it does add some
computational overhead. The primary cost of building the datastore is a single forward pass over all
examples in the datastore, which 1s a fraction of the cost for training on the same examples for one
epoch. During inference, retrieving 64 keys from a datastore containing billions of items results in a
generation speed that is two orders of magnitude slower than the base MT system.

But also Increases
translation quality!

de-en ru-en zh-en ja-en fi-en It-en de-fr de-cs en-cs
Test set sizes 2,000 2,000 2,000 993 1,996 1,000 1,701 1,997 2,000
Base MT 3445 3642 2423 12779 2592 2959 3275 21.15 22.78
+kNN-MT 35.74 3783 2751 13.14 26.55 2998 33.68 21.62 23.76
Datastore Size 5.56B 3.80B 1.19B 360M 318M 168M 4.21B 696M 533M

en-de en-ru en-zh en-ja en-fi en-lt fr-de cs-de Avg.
Test set sizes 1,997 1,997 1,997 1,000 1,997 998 1,701 1,997 -
Base MT 36.47 2628 30.22 2135 2137 1741 26.04 22.78 26.00
+kNN-MT 3949 2791 33.63 23.23 2220 18.25 27.81 2355 27.40
Datastore Size 6.50B 4.23B 1.13B 433M 375M 204M 398B 689M -

Can make it faster by using a
smaller datastore

Datastore size: en-zh=1.13B, ru-en=3.8B

-V
7N

5
g
O 4
wn
>
L
7 3
=
g > —e— —0 —o
g
Q2
=1
- —— kNN-MT for en-zh
0 —&— KkNN-MT for ru-en
0.0 0.2 0.4 0.6 0.8 1.0

Fraction of the Size of the Datastore

